

ROITHNER LASERTECHNIK GIBBH

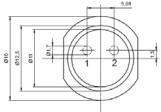
WIEDNER HAUPTSTRASSE 76 TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM

1040 VIENNA **AUSTRIA**

ELJ-810-629

TECHNICAL DATA

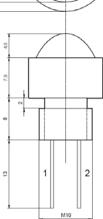
High Power LED, Jumbo Package


AIGaAs

ELJ-810-629 is high power LED in an black anodised aluminium case, with thread socket for easy handling and heat sink mounting.

It is designed for illumination, remote control and optical communications, light barriers, measurement systems, etc.

Specifications


- Technology: AlGaAs/GaAlAs, 1 power LED chip
- Peak Wavelength: typ. 810 nm Optical Ouput Power: typ. 50 mW
- Package: Jumbo, metal case with plastic lens

Absolute Maximum Ratings ($T_C=25$ °C)

Item	Symbol	Value	Unit
Power Dissipation	P _D	4	W
Forward Current	I _F	1.1	Α
Pulse Forward Current *	I _{FP}	2.0	Α
Operating Temperature	T _{opr}	-25 +100	°C
Storage Temperature	T _{stg}	-25 +100	°C
Junction Temperature	T _i	100	°C

on heat sink (S ≥ 200 cm²)

Outline:

 $H = 12.4 \text{ mm } (\pm 0.5)$ $D = 16 \text{ mm } (\pm 0.5)$

Thread M10

PIN	Function
1	LED Cathode
2	LED Anode

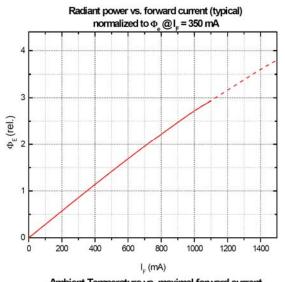
(Unit: mm)

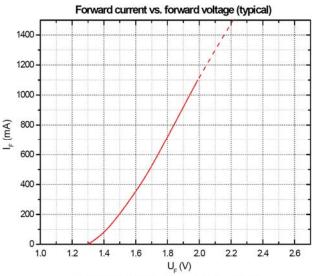
Specifications ($T_C=20$ °C)

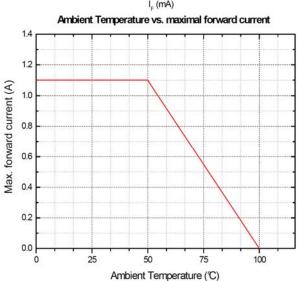
Item	Test Condition	Symbol	Min.	Тур.	Max.	Unit		
Optical Specifications								
Radiant Power	$I_F = 350 \text{ mA}$	Фе	40	50	-	mW		
Radiant Power *	$I_F = 1000 \text{ mA}$	Фе	ı	125	-	mW		
Radiant Intensity	$I_F = 350 \text{ mA}$	l _e	300	600	-	mW/sr		
Radiant Intensity *	$I_F = 1000 \text{ mA}$	l _e	ı	1650	-	mW/sr		
Peak Wavelength	$I_F = 350 \text{ mA}$	λ_{p}	800	810	820	nm		
Spectral Bandwidth at 50%	$I_F = 350 \text{ mA}$	$\Delta\lambda_{0.5}$	ı	30	-	nm		
Viewing Angle	$I_F = 350 \text{ mA}$	φ	-	17	-	deg		
Electrical Specifications								
Forward Voltage	$I_F = 350 \text{ mA}$	U_F	ı	1.6	2.0	V		
Forward Voltage *	$I_F = 1000 \text{ mA}$	U_F	ı	2.0	2.6	V		
Switching Time	$I_F = 350 \text{ mA}$	t _r , t _f	ı	75	-	ns		
Reverse Voltage	$I_R = 100 \mu A$	U_R	5	-	-			
Thermal Resistance Junction-Case		R _{thJC}	-	10	-	K/W		

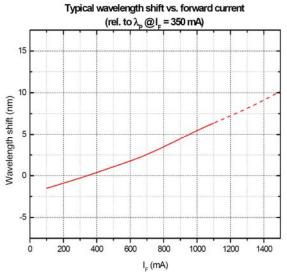
^{*} only recommended on optimal heat sink

pulse width ≤ 10µs, f ≤ 500 Hz


ROITHNER LASERTECHNIK GIRDH


WIEDNER HAUPTSTRASSE 76


1040 VIENNA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM



Typical Performance Curves

Remarks concerning optical radiation safety*

At low forward current (≤100 mA), and continuous operation, this LED may be classified as LED product *Class 1*, according to standard IEC 60825-1:A2. *Class 1* products are safe to eyes and skin under reasonably predictable conditions. This implicates a direct observation of the light beam by means of optical instruments.

When driven with higher continuous forward current, (up to 800 mA), this product should be classified as LED product *Class 1M*, according to standard IEC 60825-1:A2. *Class 1M* products are safe to eyes and skin under normal conditions, including when users view the light beam directly. Class 1M products produce either a highly divergent beam or a large diameter beam. Therefore only a small part of the whole light beam can enter the eye. However, such optical products can be harmful to the retina if the beam is viewed using magnifying optical instruments. Therefore, users should not incorporate optics that could concentrate the output into the eyes.

If intended to operate at very high continuous current (>0.8 A), this product has to be (potentially) classified as *Class 3B* LED. *Class 3B* LEDs may have sufficient power to cause an eye injury, both from the direct beam and from reflections,so these products are therefore considered hazardous to the eye. However, the extent and severity of any eye injury arising from an exposure to the light beam of a Class 3B product will depend upon several factors including the radiant power entering the eye and the duration of the exposure. Nontheless, adequate precautions should be taken to avoid direct or indirect viewing into the beam.

*Note: Safety classification of an optical component mainly depends on the intended application and the way the component is being used. Furthermore, all statements made to classification are based on calculations and are only valid for this LED "as it is", and at continuous operation. Using pulsed current or altering the light beam with additional optics may lead to different safety classifications. Therefore these remarks should be taken as recommendation and guideline only.

Notes

- The mentioned specifications are for reference purpose only and subjected to change without prior notice.
- All measurements carried out on blank aluminium heat sink, S = 180 cm², passive cooling. Measurement results and curve characteristics obtained with other heat sinks may differ.
- Do not view directly into the emitting area of the LED during operation!
- This high power LED must be cooled!

ROITHNER LASERTECHNIK GIRDH

WIEDNER HAUPTSTRASSE 76



Handling precautions

To prevent damage to the LED during soldering and assembly, following precautions have to be taken into account.

a) The bending point of the lead frame should b) While bending, the base of the lead frame has be located at least 2.5 mm away from the to be fixed with radio pliers or similar. body.

soldering.

c) To ensure an adequate strain relief, the d) Avoid any torsion or tensile loading of the lead lead frames have to be firmly fixed during frames, especially when they have been heated after being soldered.

e) LEDs are static sensitive devices, so adequate handling precautions have to be taken, e.g. wearing grounding wrist straps.

