Rev. 2.0, 03.05.2019

LED365-66-60-110

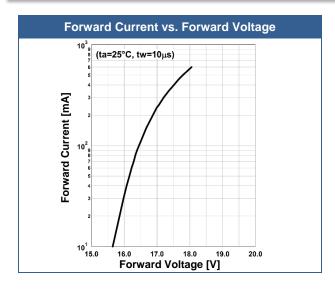
- UV High Power LED Array
- 365 nm, 130 mW
- Chip: 350x350 μm, 60 pcs., AlGaN
- TO-66 Package, Flat Glass Cap
- Viewing Angle: 102°

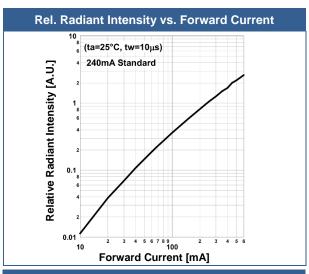
Description

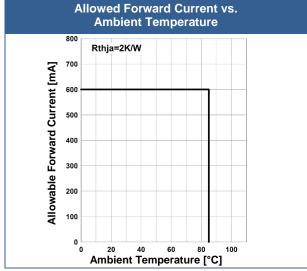
LED365-66-60-110 is a wide viewing and extremely high output power illuminator containing an array of 60 pcs. AlGaN chip dies, mounted on a metal stem TO-66 and covered with a flat glass cap. On forward bias a power radiation of typical 130 mW is given at a peak wavelength of 365 nm.

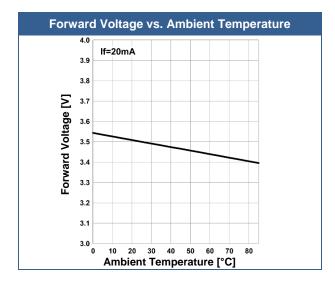
Maximum Ratings (TCASE=25°C)

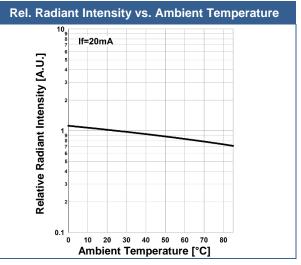
Daviouston	Combal	Val	l loit			
Parameter	Symbol	Min.	Max.	Unit		
Power Dissipation	PD		12	W		
Forward Current	IF		600	mA		
Reverse Voltage	VF		25	V		
Thermal Resistance	RTHJA		2	K/W		
Junction Temperature	TJ		120	°C		
Operating Temperature	T _{CASE}	- 40	+ 85	°C		
Storage Temperature	T_{STG}	- 40	+ 100	°C		
Lead Solder Temperature *	T _{SLD}		+ 265	°C		

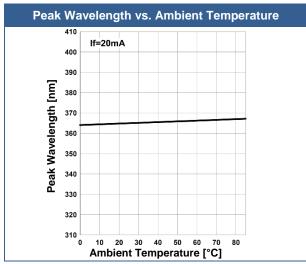

^{*} must be completed within 3 seconds

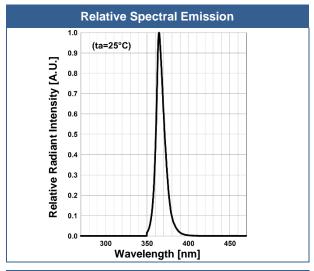

Electro-Optical Characteristics (TCASE=25°C)

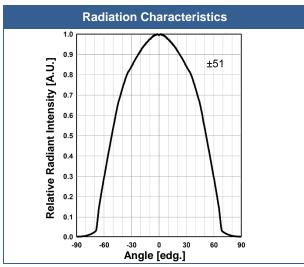

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λ_P	I _F =240mA	360		370	nm
Half Width	$\Delta \lambda$	I _F =240mA		14		nm
Forward Voltage	VF	I _F =240mA		17	20	V
Radiated Power *	Po	I _F =240mA		130		mW
Viewing Angle	φ	I _F =100mA		102		deg.
Rise Time	t r	I _F =240mA		15		ns
Fall Time	t f	I _F =240mA		15		ns

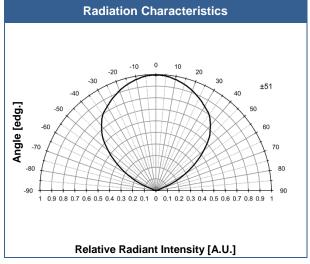

^{*} measured by \$3584-08

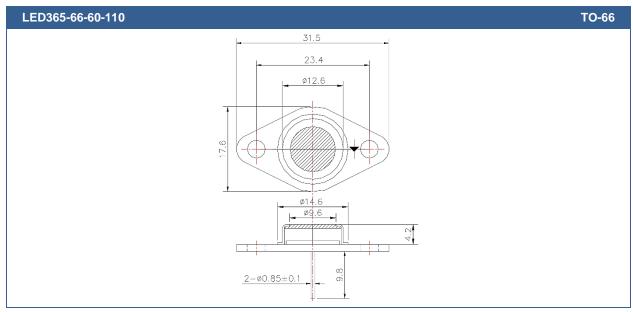

Typical Performance Curves






ROITHNER LASERTECHNIK GmbH


WIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA
TEL. +43 I 586 52 43 -0, FAX. -44 OFFICE@ROITHNER-LASER.COM



Outline Dimensions

All Dimensions in mm

Precautions

Cautions:

- This high power LED must be cooled!
- NOT look directly into the emitting area of the LED during operation!

Soldering:

- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended

DO NOT USE acetone, chloroseen, trichloroethylene, or MKS

DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

During operation these LEDs do emit **high intensity light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice