

LED1200S-66-60

- IR High Power LED Array
- 1200 nm, 140 mW
- Chip: 300x300 μm, 60 pcs., InGaAsP
- TO-66 package, Silicone and/or Epoxy resin
- Viewing Angle: 134°

Description

Rev. A1

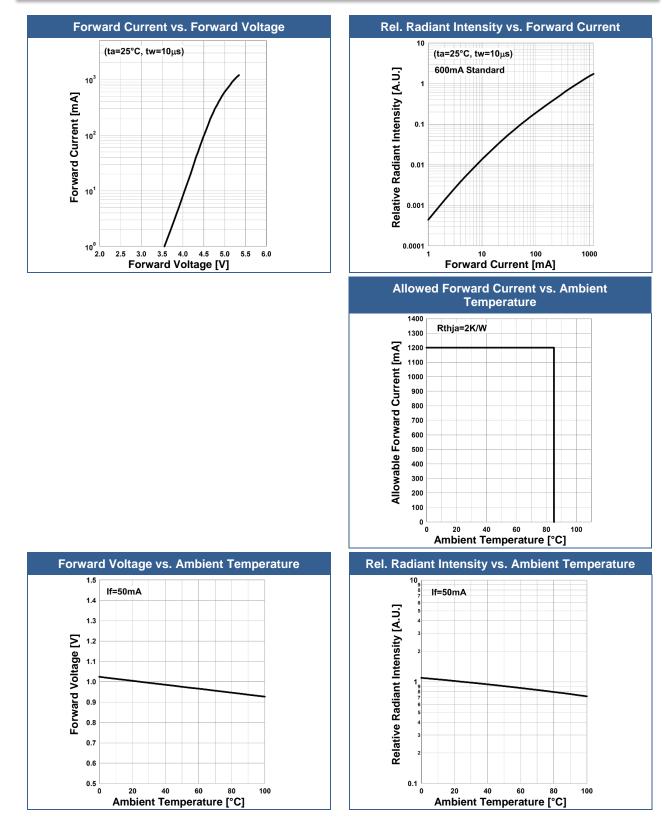
LED1200S-66-60 is a wide viewing and extremely high output power illuminator consists of 60 pcs. of InGaAsP chip dies, mounted on a metal stem TO-66 package with AIN ceramics and covered with clear silicone and/or epoxy resin.

On forward bias, it emits a power radiation of typical 140 mW at a peak wavelength of 1200 nm.

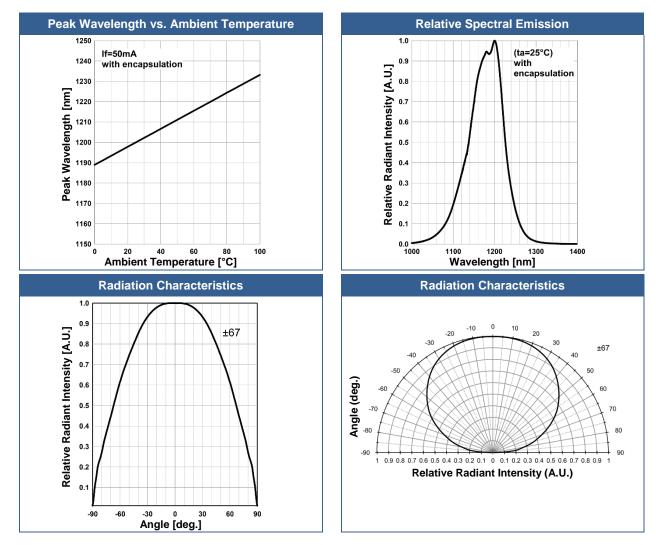
Maximum Ratings (T_{CASE}=25°C)

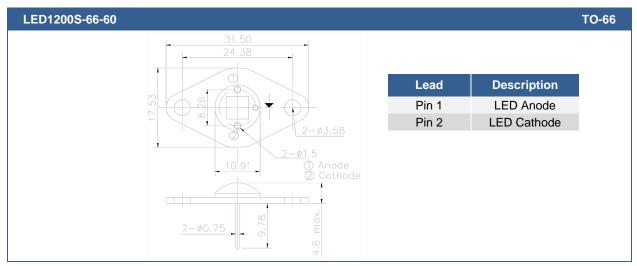
Bananatan	O multiple	Va			
Parameter	Symbol	Min.	Max.	Unit	
Power Dissipation	PD		7.8	W	
Forward Current	lF		1.2	А	
Reverse Voltage	V _R		25	V	
Thermal Resistance	Rтнја		2	K/W	
Junction Temperature	TJ		120	°C	
Operating Temperature	TCASE	- 40	+ 85	°C	
Storage Temperature	T _{STG}	- 40	+ 100	°C	
Lead Solder Temperature *	T _{SLD}		+ 265	°C	

* must be completed within 3 seconds


Electro-Optical Characteristics (T_{CASE}=25°C)

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
			IVIIII.	i yp.	IVIAA.	
Peak Wavelength	λ_P	I⊧=600mA	1150		1250	nm
Half Width	$\Delta \lambda$	I⊧=600mA		90		nm
Forward Voltage	VF	I⊧=600mA		5.0	6.5	V
Radiated Power *	Po	I _F =600mA		140		mW
Viewing Angle	20 1/2	IF=100mA		134		deg.
Rise Time	t _R	I⊧=600mA		30		ns
Fall Time	t⊢	I⊧=600mA		70		ns


* measured by G8370-85


Typical Performance Curves

Outline Dimensions

All Dimensions in mm

Precautions

Cautions:

- This high power LED must be cooled!
- NOT look directly into the emitting area of the LED during operation!

Soldering:

- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended DO NOT USE acetone, chloroseen, trichloroethylene, or MKS DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

During operation these LEDs do emit **high intensity light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Revisions History

Rev.	Rel. Date	Chapter	Modification	Page
A1	2010-07-16	-	Initial release	-

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice