

# DUV-FW18

- Deep Ultraviolet Light Emission Source
- 310, 325, 340 nm
- TO18 metal can
- Flat UV window
- Beam angle 113 deg.





# Description

**DUV-FW18** is a series of **AIGaN** based single emitter DEEP-UV LEDs in a hermetically sealed TO18 package, utilizing a flat UV glass window with a beam angle of 113 degree. **DUV-FW18** is available from 310 nm up to 340 nm peak wavelength with an optical output power of typically 1.2 mW.

# Maximum Rating (T<sub>CASE</sub> = 25°C)

| Doromotor                              | Symbol       | Va   | Heit  |      |
|----------------------------------------|--------------|------|-------|------|
| Parameter                              |              | Min. | Max.  | Unit |
| Forward Current (T <sub>A</sub> =25°C) | <i>I</i> F   |      | 40    | mA   |
| Operating Temperature                  | $T_{OPR}$    | - 20 | + 80  | °C   |
| Storage Temperature                    | <b>T</b> STG | - 40 | + 100 | °C   |
| Soldering Temp. Hand (max 5s)          | Tsol         |      | + 350 | °C   |
| Soldering Temp. Reflow (max 3s)        | Tsol         |      | + 250 | °C   |

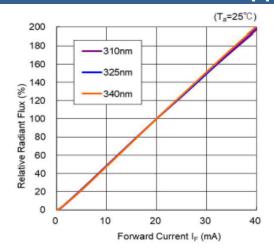
# Electro-Optical Characteristics (T<sub>CASE</sub> = 25°C, I<sub>F</sub> = 20 mA)

| Parameter             | Symbol                   | DUV310- FW18 | DUV325- FW18 | DUV340- FW18 | Unit |
|-----------------------|--------------------------|--------------|--------------|--------------|------|
| Peak Wavelength*      | λ <sub>P</sub>           | 310 ±5       | 325 ±5       | 340 ±5       | nm   |
| Radiated Power**      | Po                       | 1.2          | 1.2          | 1.3          | mW   |
| Spectral Width (FWHM) | $\Delta \lambda$         | 15           | 11           | 9            | nm   |
| Forward Voltage       | VF                       | 5.0          | 4.5          | 4.0          | V    |
| Viewing Angle         | <b>20</b> <sub>1/2</sub> |              | 113          |              | deg. |

<sup>\*</sup>Peak Wavelength Measurement tolerance is ±3nm.

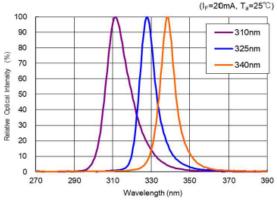
<sup>\*\*</sup>Radiant Flux Measurement tolerance is ±10%



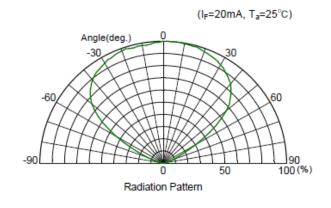

www.roithner-laser.com

### **Performance Characteristics**

#### Forward Current vs. Forward Voltage


### (T<sub>a</sub>=25°℃) 40 310nm 30 Forward Current IF (mA) 340nm 20 10 0 0 2 6 Forward Voltage V<sub>F</sub> (V)

### Forward Current vs. Relative Radiant Flux [%]




#### **Spectrum**



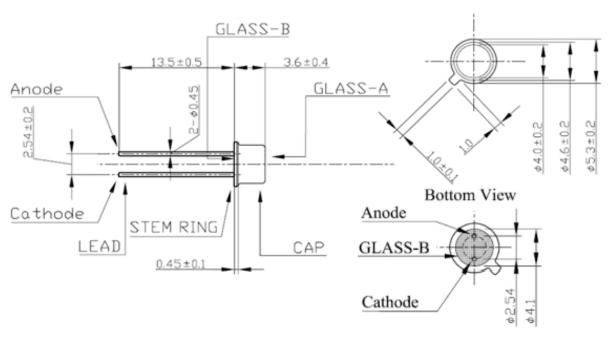


#### **Radiation Pattern**



### **Device Materials**

| Pin#      | Material                |
|-----------|-------------------------|
| Glass A   | UV                      |
| Сар       | Fe-Ni alloy, Ni plating |
| Stem ring | Fe-Ni alloy, Au plating |
| Glass B   | Hard-glass (Black)      |
| Leads     | Fe-Ni alloy, Au plating |






2 www.roithner-laser.com

### **Outline Dimensions**

#### **TO18**



Dimensions are subject to change for without notice.

all dimensions in mm

### **Precautions**

### Static Electricity:

**LEDs are sensitive to electrostatic discharge (ESD)**. Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

#### **UV-Radiation:**

During operation these LEDs do emit **high intensity ultraviolet light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted UV light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems that do utilize UV-LEDs:



#### Operation:

#### Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device.

Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory



www.roithner-laser.com