

RLT650-180MGE

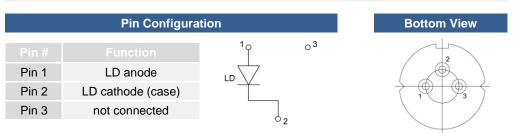
- Red Laser Diode
- 658 nm, 180 mW
- Single transverse mode
- TO18 package, Flat Window

Description

RLT650-180MGE is a red laser diode, typically emitting at 658 nm. It features single transverse mode emission and wide operating temperature range of up to 50°C. It is an efficient radiation source for many applications like laser projection, holography, metrology, or use in the biomedical field. **RLT650-180MGE** comes in 5.6 mm TO-Can package **without PD**.

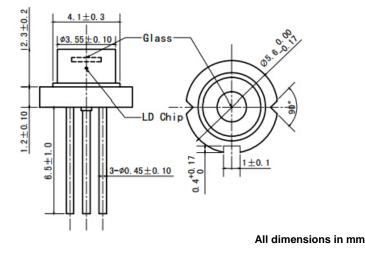
Maximum Rating* (T_{CASE} = 25°C)

Parameter	Symbol	Values		Unit	
		Min.	Max.	Unit	
Reverse Voltage	V _R		2	V	
Operating Temperature*	$T_{\rm OPR}$	- 10	+ 50	°C	
Storage Temperature*	T _{STG}	- 40	+ 85	°C	
Soldering Temperature (max. 3s)	$T_{\rm SOL}$		+ 260	°C	


* operating close to or outside these conditions may damage the device

Electro-Optical Characteristics (T_{CASE} = 25°C)

Parameter	Symphol	Values			Unit
Farameter		Min.	Тур.	Max.	Unit
	λ_{P}	650	658	665	nm
	Po		180		mW
	λ		2.0		nm
	VF		2.8	3.5	V
	I _{th}		55	80	mA
	I _F		240	260	mA
	η		1.0		W/A
parallel	θII		10	13	deg.
perpendicular	θ⊤		14	16	deg.
	parallel	λ _P Po λ VF lth F η parallel	λ_P 650 P_O λ λ λ λ λ λ_F λ_h h_{th} h_F η η parallel ΘII	Symbol Min. Typ. λ_P 650 658 P_O 180 300 λ 2.0 300 V_F 2.8 300 V_F 2.8 300 I_{fh} 555 300 parallel Oli I 100	Symbol Min. Typ. Max. Λ _P 650 658 665 Po 180 2.0 180 Λ 2.0 2.8 3.5 VF 2.8 3.5 80 Image:


Electrical Connection

Outline Dimensions

Precautions

Safety

Caution: Laser light emitted from any laser diode may be harmful to the human eye. Avoid looking directly into the laser diode's aperture when the diode is in operation.

Note: The use of optical lenses with this laser diode will increase eye hazard

LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION CLASS 4 LASER PRODUCT

ESD caution

Always do handle laser diodes with extreme care to **prevent electrostatic discharge**, the primary cause of unexpected diode failure. To prevent ESD related failures, it is strongly advised to always **wearing wrist straps**, and **grounding all applicable work surfaces**, when handling laser diodes

Operating Considerations

It is strongly advised to only operate this laser diode with a current source. The current of a laser diode is an exponential function of the voltage across it. **Usage of current regulated drive circuits is mandatory.** Laser diodes may be damaged by excessive drive currents or switching transients

It is advised, to operate the laser diode at the lowest temperature possible, and to never exceed maximum specifications as outlined in the datasheet. Device degradation will accelerate with increased temperature. **Proper heat sinking will greatly enhance stability and life time of the laser diode**

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice.