### RLT4xx-50CMG

- Blue Laser Diode
- 400 470 nm, 50 mW
- TO56 package, Flat Window





#### Description

**RLT4xx-50MG** is a series of blue laser diodes, based on InGaN quantum structures, available with peak wavelengths ranging from 400 nm to 470 nm, with a narrow peak wavelength tolerance of only +/- 2nm. It features wide operating temperature range of up to 60°C. It is an efficient radiation source for many applications like laser projection, holography, metrology, or use in the biomedical field. **RLT4xx-50CMG** comes in 5.6 mm TO-Can package **without PD**.

#### Maximum Rating\* (Tcase = 25°C)

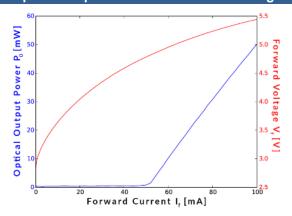
| Symbol    | Val                                                                              | Unit                                                                                                                                                                             |                                                                                                           |
|-----------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|           | Min.                                                                             | Max.                                                                                                                                                                             | Onit                                                                                                      |
| $P_{MAX}$ |                                                                                  | 100                                                                                                                                                                              | mW                                                                                                        |
| $V_{R}$   |                                                                                  | 5                                                                                                                                                                                | V                                                                                                         |
| $I_{R}$   |                                                                                  | 1                                                                                                                                                                                | μA                                                                                                        |
| $T_{OPR}$ | 0                                                                                | + 60                                                                                                                                                                             | °C                                                                                                        |
| $T_{STG}$ | - 10                                                                             | + 85                                                                                                                                                                             | °C                                                                                                        |
| $T_{SOL}$ |                                                                                  | + 260                                                                                                                                                                            | °C                                                                                                        |
|           | P <sub>MAX</sub> V <sub>R</sub> I <sub>R</sub> T <sub>OPR</sub> T <sub>STG</sub> | $\begin{array}{c c} \textbf{Symbol} & \textbf{Min.} \\ \hline P_{\text{MAX}} & \\ V_{\text{R}} & \\ I_{\text{R}} & \\ T_{\text{OPR}} & 0 \\ T_{\text{STG}} & -10 \\ \end{array}$ | $P_{\text{MAX}}$ 100 $V_{\text{R}}$ 5 $I_{\text{R}}$ 1 $T_{\text{OPR}}$ 0 + 60 $T_{\text{STG}}$ - 10 + 85 |



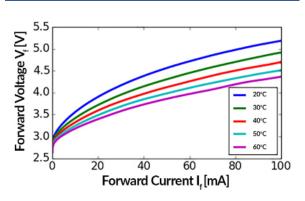
<sup>\*1</sup> operating at maximum ratings may influence the life time

## ATTENTION STATIC SENSITIVE DEVICES HANDLE ONLY AT STATIC WORK STATIONS

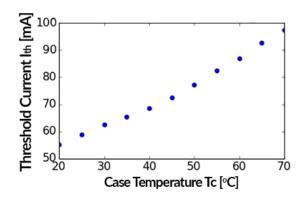
#### Electro-Optical Characteristics (TCASE = 20°C)


| Parameter                 |               | Symbol                | Values |      |      | Heit |
|---------------------------|---------------|-----------------------|--------|------|------|------|
|                           |               |                       | Min.   | Тур. | Max. | Unit |
| Peak Wavelength           |               | $\lambda_{P}$         | - 2    | 4xx  | + 2  | nm   |
| Optical Output Power      |               | Po                    |        |      | 50   | mW   |
| Spectral Width (FWHM)     |               | $\Delta \lambda$      |        | <2   |      | nm   |
| Polarization              |               |                       | TE     |      |      |      |
| Operating Voltage         |               | $V_{F}$               |        | 5.0  | 5.5  | V    |
| Threshold Current         |               | <b>I</b> th           |        | 60   | 100  | mA   |
| Operating Current         |               | <i>I</i> <sub>F</sub> |        | 110  | 220  | mA   |
| Slope Efficiency          |               | CW                    | 0.5    | 0.7  | 1.2  | W/A  |
| Beam Divergence<br>(FWHM) | parallel      | ΘII                   |        | 7    |      | deg. |
|                           | perpendicular | θΤ                    |        | 32   |      | deg. |
| Life Time (@ 10 mW)       |               |                       | 3000   | 5000 |      | h    |

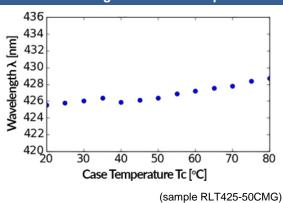
It is advised to operate this laser diode at room temperature of 20°C with good heat sinking.


www.roithner-laser.com 1

#### Performance Characteristics

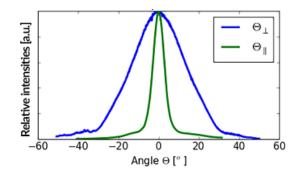

#### **Optical Output Power vs. Current / Voltage**




#### **Operating Voltage vs. Operating Current**



#### **Threshold Current vs. Case Temperature**

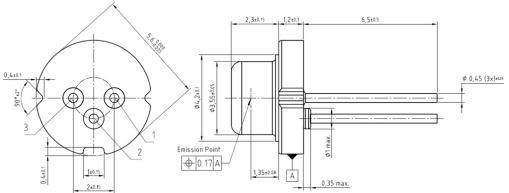



#### Peak Wavelength vs. Case Temperature



#### Far Field Pattern

intentionally blank




www.roithner-laser.com 2

#### **Electrical Connection**

# Pin Configuration Pin # Function Pin 1 LD Anode Pin 2 Case (n.c.) Pin 3 LD Cathode Pin 3

#### **Outline Dimensions**



All dimensions in mm

3

#### **Precautions**

#### Safety

**Caution:** Laser light emitted from any laser diode may be **harmful to the human eye**. Avoid looking directly into the laser diode's aperture when the diode is in operation.

Note: The use of optical lenses with this laser diode will increase eye hazard

#### **ESD** caution

Always do handle laser diodes with extreme care to **prevent electrostatic discharge**, the primary cause of unexpected diode failure. To prevent ESD related failures, it is strongly advised to always **wearing wrist straps**, and **grounding all applicable work surfaces**, when handling laser diodes

#### **Operating Considerations**

It is strongly advised to only operate this laser diode with a current source. The current of a laser diode is an exponential function of the voltage across it. **Usage of current regulated drive circuits is mandatory.** Laser diodes may be damaged by excessive drive currents or switching transients

It is advised, to operate the laser diode at the lowest temperature possible, and to never exceed maximum specifications as outlined in the datasheet. Device degradation will accelerate with increased temperature. Proper heat sinking will greatly enhance stability and life time of the laser diode

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice.

www.roithner-laser.com